
Survey of Scalable String Similarity Joins

Khalid F. Alfatmi1, Archana S. Vaidya2

Department of Computer Engineering,

Savitribai Phule Pune University,

Maharashtra, India

Abstract— Similarity Join is an important operation in data
integration and cleansing, record linkage, data deduplication
and pattern matching. It finds similar sting pairs from two
collections of strings. Number of approaches have been
proposed as well as compared for string similarity joins. The
rising era of big data demands for scalable algorithms to
support large scale string similarity joins. In this paper we
study the string similarity joins, their use. Further we look at
three different techniques for scalable string similarity join
using MapReduce, which are- Parallel set-similarity join,
MGJoin and MassJoin. Finally, we try to compare them based
on some common characteristics.

Keywords— Similarity Join, MapReduce

I. INTRODUCTION

A string similarity join between two sets of strings finds all
similar string pairs from the two sets. String similarity join
can play an important role in many real-world applications,
e.g., data cleansing and integration, and duplicate detection.
Given two collections of strings, e.g., products and city
names, the string similarity join problem is to find all
similar string pairs from the two collections of strings. The
similarity between two strings is usually quantified by
similarity functions. There are two main types of similarity
functions: set-based similarity functions (e.g., Jaccard,
Cosine, Dice) and character-based similarity functions (e.g.,
Edit distance), which we will discuss in the section II.

Number of existing similarity-join methods used in-
memory algorithms which are restricted to a particular size
of dataset. But the rise of big data now poses new
challenges for large-scale string similarity joins and
demands for new scalable algorithms. In this paper we
study the three different scalable string similarity joins. The
first approach in this direction is by Vernica[1], where they
propose a three stage method for end-to-end set-similarity
joins. The first stage generates appropriate signatures for
the data. In the second stage record IDs and join attribute
values are extracted from each record and then they are
distributed across the reducers such that pair sharing
signature go to a common reducer. The reducer outputs RID
pairs of similar records. Finally the third stage generates
actual pairs of joined records.

However the Parallel set similarity join considers only
one token at a time which increases the candidate keys and
thereby reduces the pruning power. Hence a new
MapReduce based framework came into picture, which
extends to support set-based similarity functions as well as
character based similarity function- called MassJoin. This

technique uses the Filter and Verification step to produce
similar string pair. It also uses light weight filter to decrease
the number of candidate pairs which reduces transmission
and computation cost. The MassJoin framework also
overcomes the low pruning power and skewed problem
faced in prefix filtering method [3]. Both this methods fall
under the filter and refine category.

The MGJoin proposes a multiple prefix filtering method
in which different global ordering are applied on the data
such that the number of candidate pairs are reduced
significantly [2]. The basic aim behind the MGJoin and
MassJoin method is to reduce the number of candidate keys
with reasonable computing cost which significantly
improves the filtering power.

II. PRILIMINARY

Given two collections of strings the string similarity join
finds out all the similar pairs from the two collections.
Whether the two strings are similar, is quantified by the
similarity functions/similarity metrics. The output of the
function is compared with a predefined threshold value.
The two main types of similarity metrics are: character-
based similarity metrics and set-based similarity metrics.

Character-based similarity function: This function
quantifies the similarity between two strings based on
character transformations. They are fit for capturing
typographical error. Edit Distance is a representative of
character based similarity function. Edit distance between
two strings is the minimum number of edit operations that
transform one string into another [6][7]. Allowable edit
operations are- insertion as well as deletion of characters,
and replacing a character in the string by another character.
For example consider two strings p=”jhon” and q=”john”.
Their edit distance ED(p,q)= 2, since the first string can be
transformed to second by transforming two characters. Two
strings are said to be similar w.r.t. the edit distance metric if
their edit distance is not larger than a given threshold ‘τ’.

Set-based similarity function: This function first transform
strings into sets of tokens. A token can be either a word or a
n-gram. The n-gram uses a string’s substrings with length n
to generate the set, where the substring with length n is
called a n-gram. For example, the 2-gram set of “imdb” is
{“im”, “md”, “db”}. The token-based metrics are suitable
for long strings, e.g., documents. The three well-known set-
based similarity functions are Jaccard, Cosine, and Dice[5].

Khalid F. Alfatmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 194-197

www.ijcsit.com 194

where r, s are two strings.
Two strings are said to be similar w.r.t. the set-based
similarity function if their similarity is not smaller than a
threshold ‘δ’.

MapReduce: MapReduce is a programming model
proposed by Google. It is used for processing and
generating large datasets [4]. The actual computations are
specified by the user in terms of two separate functions as
map and reduce. These computations are automatically
parallelized across large-scale clusters of machines by the
underlying runtime system. The computation takes a set of
key/value pairs as input, and produces a set of key/value
pairs as output. The MapReduce computation takes place as
two functions: map and reduce. The Map function which
takes an input pair, produces a set of intermediate key/value
pairs. The MapReduce library is responsible for grouping
together all intermediate values associated with the same
intermediate key and passes them to the reduce function.
The reduce function, which accepts an intermediate key and
a set of values for that key, acts as a reducer by merging the
values together to form a smaller set of values. Typically,
the reduce function produces just zero or one output value.

Fig. 1 Dataflow in a MapReduce computation

III. PARALLEL SET SIMILARITY FRAMEWORK

The parallel set similarity join is the first approach towards
scalable string similarity join. This approach consists of 3
stages as follows[1]:

1. The first stage scans the data and computes frequency
of each token and then sorts the token based on frequency;
this is called as token ordering.

2. The second stage produces list of similar RID pairs
using the prefix filtering principle. Further based on prefix
token, the MapReduce framework groups the RID and join-
attribute value pairs.

3. Finally the third stage generates pair of similar records
by using list of similar RID pairs and the original data.

Fig. 2 Parallel set similarity join Framework

Fig. 2 shows the functional block diagram of Parallel set

similarity join.

The 3 stages based on self-join can discussed further in

detail:

A. Token Ordering
There are two methods of token ordering in the first
stage-

1. Basic Token Ordering (BTO)- relies on two phases

of MapReduce in which first phase computes the
frequency of each token and the second phase sorts
the token based on their frequencies.

2. One Phase Token Ordering (OPTO)- in this
approach the list of token is explicitly sorted in
memory. Hence it uses only one MapReduce phase.

B. RID-Pair generation

This stage also called as kernel, scans the original data
and extracts prefix of each record using the token order
computed by the first stage. There are two approaches
of finding the RID pair of similar records:
1. Basic Kernel (BK)- In this function the reducer uses

a nested loop approach to compute similarity of join
attribute values. The map function extracts RID and
join attribute values after retrieving the original
data. It tokenizes the join attribute and computes
the prefix length. At the last it uses individual or
group token routing strategy to generate output pair.

2. Indexed Kernel (PK)- This function uses existing
set similarity join algorithm- PPJoin+ to find RID
pairs of similar records. Hence it is called as
PPJoin+ Kernel(PK).

Khalid F. Alfatmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 194-197

www.ijcsit.com 195

C. Record Join
The final stage is used to join the records of RID pairs
of, generated in stage 2.
1. Basic Record Join(BRJ)- uses two MapReduce

phases. The first phase fills in the record
information for each half of each pair and the
remaining half is taken care in the second phase.

2. One Phase Record Join(OPRJ)- uses only one
MapReduce phase where the RID pairs are
broadcast and loaded at map function before the
function consumes the input data.

IV. MGJOIN FRAMEWORK

Many algorithms proposed for string similarity join take
assistance from inverted index. They adopt a two stage
filter and refine strategy in identifying similar string pairs:
1. To generate candidate pair after traversing the inverted
index; and 2. To verify candidate pair by computing
similarity. But in general most of these algorithms suffer
from low pruning power, or they incur too much
computation to improve the pruning power. Hence a
multiple prefix filtering method based on global ordering is
proposed called as MGJoin.

Fig. 3 MGJoin- Multiple prefix filtering

MGJoin is based on multiple prefix filtering technique. It
applies different global orderings in a pipelined manner. In
Fig. 3, a set of global ordering is applied on different stages
where O1 is selected as a basis to build inverted index for
prefix tokens. Further candidate pairs are generated for each
string based on its prefixes. A pipelining processing is used
to prune the false positives in advance. The candidate pairs
are continuously checked in pipelining order, significantly
reducing their size.

V. MASSJOIN FRAMEWORK

MassJoin is a MapReduce-based string similarity join
algorithm, which can support both set-based similarity
functions and character-based similarity functions. Consider
there are two set of strings; R and S both containing
multiple strings. <sid> and <rid> are the ids given to the
strings in the set S and R respectively. The working of
MassJoin shown in fig. 4, can be deduced in following steps:

A. Signature Generation

The character based similarity function depends on
given edit-distance threshold and generates a fixed number
of signatures. But, for a set-based similarity functions, the
number of signatures depends on the string lengths. Hence
in MassJoin a new algorithm is used to generate signatures.
Basically two methods are used for signature generation-
Position-aware method and Muti-match-aware method. The
two methods can also be used simultaneously known as
hybrid method. These methods will reduce the number of
signatures generated simultaneously avoiding false-
negatives.

Fig. 4 MassJoin Framework

B. Filter Stage
This stage generates candidate pairs using techniques

mentioned in Signature generation stage. The map phase
uses the signatures as keys and string as values. As two
similar strings share a same key, they are shuffled to the
same reduce task. String Ids are used in place of strings
which reduces the transmission cost. Each reduce node in
the reduce phase, takes a key value pair as input, which
consist of signature and the list of strings containing the
signature. Next it splits the list into two groups i.e separate
for <sid> and <rid>.

Khalid F. Alfatmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 194-197

www.ijcsit.com 196

C. Verification Stage
This stage verifies the candidate pairs generated from the

filter stage. It provides with a two-phase method to handle
two important goals; first- to eliminate duplicates which
arise due to two string sharing multiple signature and
second- to replace the id in candidate pair with real string.

TABLE 1

COMPARISONOF PARALLEL SET SIMILARITY JOIN, MGJOIN
AND MASSJOIN

Comparison
Points

Parallel Set-
Similarity Join

MGJoin MassJoin

Basic
Technique

3 stages- token
allotment,
pairing and
record join

Multiple
global
ordering

Filter and
Verification

Similarity
function
supported

Set based
similarity
function

Set based
similarity
function

Character
based as
well as Set
based
similarity
function

Joins
Supported

Self, RS Join Self-Join

Number of
tokens

Single Pipelined Multiple

Performance

First approach,
hence low
pruning power,
skewed
problem

Outperforms
PPJoin+ and
other state of
the art
methods

High
pruning
power with
light weight
filters

VI. PROPOSED SYSTEM

In the proposed system, partition based approach based on
prefix filtering will be implemented which will support both,
the set based similarity function and character based
similarity function. In this technique, signatures will be
generated with the hybrid approach depending on the
similarity function. The filter and verification phase will
have only one map and reduce function in which the
pruning will be done based on global ordering. The filters
can be used in both the map and reduce phase to minimize
the number of candidate pair. This will enhance the pruning
power as well as improve the performance of the overall
system.

VII. CONCLUSIONS

This paper provides a comprehensive survey of existing
scalable string similarity join algorithms, including MGJoin,
MassJoin and parallel set similarity join. The parallel set
similarity join is a three stage based method. It considers a
single token as key which leads to low pruning power and
skewed problem. Whereas MassJoin take care of the
shortcomings faced by previous two approaches efficiently.
It implements character based as well as set based
similarity function, suitable for short strings as well as large
documents. It also implements the merging technique and
light weight filters, that improves the performance of
MassJoin significantly over MGJoin and parallel set-
similarity joins.

ACKNOWLEDGMENT

We are glad to express our sentiments of gratitude to all
who rendered their valuable guidance to us for this work.
We would like to thank Prof. Dr. P. C. Kulkarni, Principal,
G. E. S. R. H. Sapat College of Engg., Nashik. We are also
thankful to Prof. N. V. Alone, Head of Department,
Computer Engg., G. E. S. R. H. Sapat College of Engg.,
Nashik. We thank the researchers for publishing their
research work as a guideline.

REFERENCES
[1] R. Vernica, M. J. Carey, and C. Li, “Efficient Parallel Set Similarity

Joins using MapReduce,” In SIGMOD,2010, pages 495-502.
[2] C. Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du and Anthony K.H.

Tung, “Efficient and Scalabe Processing of String Similarity Join,”
IEEE Transactions on Knowledge and Data Engineering, VOL. 25,
2013.

[3] D. Deng, G. Li, S. Hao, Wang and J.Feng, “MassJoin: A
MapReduce-based Method for Scalabe String Similarity Joins,”
ICDE Conference, 2014.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” In OSDI, 2014, pages 137- 150.

[5] NikolausAugsten, Michael H Bohlen, “Similarity Joins in
Relational Database Systems,” Morgan & Claypool publishers.

[6] G. Li, D. Deng, J. Wang, and J. Feng, “Pass-join: A partition-based
method for similarity joins” PVLDB, 5(3):253-264, 2011.

[7] Younghoon Kim, Kyuseok Shim, “ Parallel Top-K Similarity Join
Algorithms using MapReduce,” IEEE 28th International Conference
on Data Engineering, 2012.

[8] Yu Jiang, Guoliang Li, Jinhua Feng, Wen-Syan Li, “String
Similarity Joins: An Experimental evaluation”, International
Conference on Very LargeDataBases, Vol.7, No.8., 2014.

Khalid F. Alfatmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 194-197

www.ijcsit.com 197

