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Abstract— Similarity Join is an important operation in data 
integration and cleansing, record linkage, data deduplication 
and pattern matching. It finds similar sting pairs from two 
collections of strings. Number of approaches have been 
proposed as well as compared for string similarity joins.  The 
rising era of big data demands for scalable algorithms to 
support large scale string similarity joins. In this paper we 
study the string similarity joins, their use. Further we look at 
three different techniques for scalable string similarity join 
using MapReduce, which are- Parallel set-similarity join, 
MGJoin and MassJoin. Finally, we try to compare them based 
on some common characteristics. 
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I. INTRODUCTION 

A string similarity join between two sets of strings finds all 
similar string pairs from the two sets. String similarity join 
can play an important role in many real-world applications, 
e.g., data cleansing and integration, and duplicate detection.
Given two collections of strings, e.g., products and city 
names, the string similarity join problem is to find all 
similar string pairs from the two collections of strings. The 
similarity between two strings is usually quantified by 
similarity functions. There are two main types of similarity 
functions: set-based similarity functions (e.g., Jaccard, 
Cosine, Dice) and character-based similarity functions (e.g., 
Edit distance), which we will discuss in the section II. 

Number of existing similarity-join methods used in-
memory algorithms which are restricted to a particular size 
of dataset. But the rise of big data now poses new 
challenges for large-scale string similarity joins and 
demands for new scalable algorithms. In this paper we 
study the three different scalable string similarity joins. The 
first approach in this direction is by Vernica[1], where they 
propose a three stage method for end-to-end set-similarity 
joins. The first stage generates appropriate signatures for 
the data. In the second stage record IDs and join attribute 
values are extracted from each record and then they are 
distributed across the reducers such that pair sharing 
signature go to a common reducer. The reducer outputs RID 
pairs of similar records. Finally the third stage generates 
actual pairs of joined records.   

However the Parallel set similarity join considers only 
one token at a time which increases the candidate keys and 
thereby reduces the pruning power. Hence a new 
MapReduce based framework came into picture, which 
extends to support set-based similarity functions as well as 
character based similarity function- called MassJoin. This 

technique uses the Filter and Verification step to produce 
similar string pair. It also uses light weight filter to decrease 
the number of candidate pairs which reduces transmission 
and computation cost. The MassJoin framework also 
overcomes the low pruning power and skewed problem 
faced in prefix filtering method [3]. Both this methods fall 
under the filter and refine category. 

The MGJoin proposes a multiple prefix filtering method 
in which different global ordering are applied on the data 
such that the number of candidate pairs are reduced 
significantly [2]. The basic aim behind the MGJoin and 
MassJoin method is to reduce the number of candidate keys 
with reasonable computing cost  which significantly 
improves the filtering power.  

II. PRILIMINARY

Given two collections of strings the string similarity join 
finds out all the similar pairs from the two collections. 
Whether the two strings are similar, is quantified by the 
similarity functions/similarity metrics. The output of the 
function is compared with a predefined threshold value. 
The two main types of similarity metrics are: character-
based similarity metrics and set-based similarity metrics. 

Character-based similarity function: This function 
quantifies the similarity between two strings based on 
character transformations. They are fit for capturing 
typographical error. Edit Distance is a representative of 
character based similarity function. Edit distance between 
two strings is the minimum number of edit operations that 
transform one string into another [6][7]. Allowable edit 
operations are- insertion as well as deletion of characters, 
and replacing a character in the string by another character. 
For example consider two strings p=”jhon” and q=”john”. 
Their edit distance ED(p,q)= 2, since the first string can be 
transformed to second by transforming two characters. Two 
strings are said to be similar w.r.t. the edit distance metric if 
their edit distance is not larger than a given threshold ‘τ’. 

Set-based similarity function: This function first transform 
strings into sets of tokens. A token can be either a word or a 
n-gram. The n-gram uses a string’s substrings with length n 
to generate the set, where the substring with length n is 
called a n-gram. For example, the 2-gram set of “imdb” is 
{“im”, “md”, “db”}. The token-based metrics are suitable 
for long strings, e.g., documents. The three well-known set-
based similarity functions are Jaccard, Cosine, and Dice[5]. 
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where r, s are two strings. 
Two strings are said to be similar w.r.t. the set-based 
similarity function if their similarity is not smaller than a 
threshold ‘δ’. 
 
MapReduce: MapReduce is a programming model 
proposed by Google. It is used for processing and 
generating large datasets [4]. The actual computations are 
specified by the user in terms of two separate functions as 
map and reduce. These computations are automatically 
parallelized across large-scale clusters of machines by the 
underlying runtime system.  The computation takes a set of  
key/value pairs as input, and produces a set of  key/value 
pairs as output. The MapReduce computation takes place as 
two functions: map and reduce. The Map function which 
takes an input pair, produces a set of intermediate key/value 
pairs. The MapReduce library is responsible for grouping 
together all intermediate values associated with the same 
intermediate key and passes them to the reduce function. 
The reduce function, which accepts an intermediate key and 
a set of values for that key, acts as a reducer by merging the 
values together to form a  smaller set of values. Typically, 
the reduce function produces just zero or one output value.  
 

 
Fig. 1 Dataflow  in a MapReduce computation 

 

III.  PARALLEL SET SIMILARITY FRAMEWORK 

The parallel set similarity join is the first approach towards 
scalable string similarity join. This approach consists of 3 
stages as follows[1]: 

1. The first stage scans the data and computes frequency 
of each token and then sorts the token based on frequency; 
this is called as token ordering. 

2. The second stage produces list of similar RID pairs 
using the prefix filtering principle. Further based on prefix 
token, the MapReduce framework groups the RID and join-
attribute value pairs. 

3. Finally the third stage generates pair of similar records 
by using list of similar RID pairs and the original data.   

 

 
Fig. 2 Parallel set similarity join Framework 

 
Fig. 2 shows the functional block diagram of Parallel set 

similarity join. 
 
The 3 stages based on self-join can discussed further in 

detail: 
 

A. Token Ordering 
There are two methods of token ordering in the first 
stage-  
 
1. Basic Token Ordering (BTO)- relies on two phases 

of MapReduce in which first phase computes the 
frequency of each token and the second phase sorts 
the token based on their frequencies. 

2. One Phase Token Ordering (OPTO)- in this 
approach the list of token is explicitly sorted in 
memory. Hence it uses only one MapReduce phase. 

 
B. RID-Pair generation 

This stage also called as kernel, scans the original data 
and extracts prefix of each record using the token order 
computed by the first stage. There are two approaches 
of finding the RID pair of similar records: 
1. Basic Kernel (BK)- In this function the reducer uses 

a nested loop approach to compute similarity of join 
attribute values. The map function extracts RID and 
join attribute values after retrieving the original 
data. It tokenizes the join attribute and computes 
the prefix length. At the last it uses individual or 
group token routing strategy to generate output pair. 

2. Indexed Kernel (PK)- This function uses existing 
set similarity join algorithm- PPJoin+ to find RID 
pairs of similar records. Hence it is called as 
PPJoin+ Kernel(PK). 
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C. Record Join 
The final stage is used to join the records of  RID pairs 
of, generated in stage 2.  
1. Basic Record Join(BRJ)- uses two MapReduce 

phases. The first phase fills in the record 
information for each half of each pair and the 
remaining half is taken care in the second phase. 

2. One Phase Record Join(OPRJ)- uses only one 
MapReduce phase where the RID pairs are 
broadcast and loaded at map function before the 
function consumes the input data.  
 

IV.  MGJOIN FRAMEWORK 

Many algorithms proposed for string similarity join take 
assistance from inverted index. They adopt a two stage 
filter and refine strategy in identifying similar string pairs: 
1. To generate candidate pair after traversing the inverted 
index; and 2. To verify candidate pair by computing 
similarity. But in general most of these algorithms suffer 
from low pruning power, or they incur too much 
computation to improve the pruning power. Hence a 
multiple prefix filtering method based on global ordering is 
proposed called as MGJoin.   

 

 
 

Fig. 3 MGJoin- Multiple prefix filtering 
 

MGJoin is based on multiple prefix filtering technique. It 
applies different global orderings in a pipelined manner. In 
Fig. 3, a set of global ordering is applied on different stages 
where O1 is selected as a basis to build inverted index for 
prefix tokens. Further candidate pairs are generated for each 
string based on its prefixes. A pipelining processing is used 
to prune the false positives in advance. The candidate pairs 
are continuously checked in pipelining order, significantly 
reducing their size.  

 

V. MASSJOIN FRAMEWORK 

MassJoin is a MapReduce-based string similarity join 
algorithm, which can support both set-based similarity 
functions and character-based similarity functions. Consider 
there are two set of strings; R and S both containing 
multiple strings. <sid> and <rid> are the ids given to the 
strings in the set S and R respectively. The working of 
MassJoin shown in fig. 4, can be deduced in following steps: 

 
A. Signature Generation 

The character based similarity function depends on 
given edit-distance threshold and generates a fixed number 
of signatures. But, for a set-based similarity functions, the 
number of signatures depends on the string lengths. Hence 
in MassJoin a new algorithm is used to generate signatures. 
Basically two methods are used for signature generation- 
Position-aware method and Muti-match-aware method. The 
two methods can also be used simultaneously known as 
hybrid method. These methods will reduce the number of 
signatures generated simultaneously avoiding false-
negatives. 

 

 
 

Fig. 4 MassJoin Framework 
 

B. Filter Stage  
This stage generates candidate pairs using techniques 

mentioned in Signature generation stage. The map phase 
uses the signatures as keys and string as values. As two 
similar strings share a same key, they are shuffled to the 
same reduce task. String Ids are used in place of strings 
which reduces the transmission cost. Each reduce node in 
the reduce phase, takes a key value pair as input, which 
consist of signature and the list of strings containing the 
signature. Next it splits the list into two groups i.e separate 
for <sid> and <rid>.  
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C. Verification Stage  
This stage verifies the candidate pairs generated from the 

filter stage. It provides with a two-phase method to handle 
two important goals; first- to eliminate duplicates which 
arise due to two string sharing multiple signature and 
second- to replace the id in candidate pair with real string. 

 
TABLE 1  

COMPARISONOF PARALLEL SET SIMILARITY JOIN, MGJOIN 
AND MASSJOIN 

Comparison 
Points 

Parallel Set- 
Similarity Join 

MGJoin MassJoin 

Basic 
Technique 

3 stages- token 
allotment, 
pairing and 
record join 

Multiple 
global 
ordering 

Filter and 
Verification 

Similarity 
function 
supported 

Set  based 
similarity 
function 

Set  based 
similarity 
function 

Character 
based as 
well as Set  
based 
similarity 
function 

Joins 
Supported 

Self, RS Join  Self-Join 

Number of 
tokens 

Single Pipelined Multiple 

Performance 

First approach, 
hence low 
pruning power, 
skewed 
problem 

Outperforms 
PPJoin+ and 
other state of 
the art 
methods 

High 
pruning 
power with 
light weight 
filters 

 
VI. PROPOSED SYSTEM 

In the proposed system, partition based approach based on 
prefix filtering will be implemented which will support both, 
the set based similarity function and character based 
similarity function. In this technique, signatures will be 
generated with the hybrid approach depending on the 
similarity function. The filter and verification phase will 
have only one map and reduce function in which the 
pruning will be done based on global ordering. The filters 
can be used in both the map and reduce phase to minimize 
the number of candidate pair. This will enhance the pruning 
power as well as improve the performance of the overall 
system. 

VII. CONCLUSIONS 

This paper provides a comprehensive survey of existing 
scalable string similarity join algorithms, including MGJoin, 
MassJoin and parallel set similarity join. The parallel set 
similarity join is a three stage based method. It considers a 
single token as key which leads to low pruning power and 
skewed problem. Whereas MassJoin take care of the 
shortcomings faced by previous two approaches efficiently. 
It implements character based as well as set based 
similarity function, suitable for short strings as well as large 
documents. It also implements the merging technique and 
light weight filters, that improves the performance of 
MassJoin significantly over MGJoin and parallel set-
similarity joins. 
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